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ABSTRACT 
 This paper addressed the acoustical characteristics of dry vacuum pumps and predictive diagnostics of dry 
vacuum pumps with these characteristics. The dry pump system designed for the semiconductor 
manufacturing is used to maintain the cleanliness by exhaust the purge gas. The semiconductor process can 
be divided two separable state segments, the one is gas loaded state batch when pump exhaust the purge gas 
and the other is idle state batch when the valve is closed during pump operation. As the physical attributions 
of gas loaded state and idle state are different, the corresponding noise characteristic is different, too. With the 
Linearized Adaptive Parameter Model (APM), the parameters indicate each batch can be obtained. These 
parameters contain the characteristics of pump noise and can be used for predictive diagnostic of individual 
dry pump by observing the trend of parameters. 

1. INTRODUCTION 
In semiconductor manufacturing process, the need for predictive diagnostic technique for dry 

vacuum pump has been one of the “hot” technical issues since R. Bahren and M. Kuhn [1] pointed 
out its significance. One of main applications of the dry vacuum pump system has focused on the 
semiconductor manufacturing processes that require much improved cleanliness [2]. So, diagnostic 
technique for dry vacuum pump system has strong relationship with an error rate of semiconductor.  

 The test result, carried out in the Centre of Vacuum Technologies of KRISS, indicate that state 
variables such as exhaust pressure and supply currents to booster and dry pump motor are monitored 
only as static properties. Lim et al.[3] proposed the use of vibration accelerometers to monitor the 
dynamic running conditions of the gears and bearing of vacuum pumps, including the unbalance of 
rotors. A common idea for predictive diagnostics, as described by Robert et al.[4], is to extract 
extraordinary features from the recorded signals of state variables using multiple principal 
component analysis (PCA). These principal components are converted to one value, Hotelling’s T2. 
However, much difficulty in using PCA is encountered when the sizes of the collected batch data are 
different each others. Unfortunately, the semiconductor process period is time-varying, so the sizes 
of the collected state variables batch are different. D. Sung [5] reported that the dynamic time 
warping algorithm[6,7] worked well for predictive diagnosis of dry vacuum pumps by warping 
collected state variables batch data. To overcome that DTW take number of computation resources, 
W. Chueng [8] proposed linear adaptive parameter modeling (APM) algorithm and K. Lee [9] 
applied APM to pump diagnosis.  

 To use adaptive parameter modeling, the characteristics of collected state variable batch data 
have to be considered first. K. Lee [9] divided semiconductor manufacturing processes into 
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gas-loaded state process and idle state process, and used batch data from gas-loaded state process to 
diagnose vacuum pump. Batch data signals from gas-loaded state process has large displacement 
variance, however, Batch data signals are affected by purge gas. On the other hand, the batch data 
from idle state process are only affected by state of vacuum pump. In this study, we diagnosed 
vacuum pump with APM algorithm using idle state process data.  

 In section II, the measurement setup of multiple state variables and their statistical features are 
introduced. In Section III, the preprocessing scheme (APM) required for predictive diagnostics are 
introduced and their resultant batch data are illustrated. In Section IV, our diagnostic results and 
discussion are presented. Finally, our main results are summarized in Section V. 

2. MEASUREMENT SETUP AND STATISTICAL FEATURE 

2.1 Measurement setup of state variables 
In this study, Inlet pressure, exhaust pressure and the supply currents, acceleration for vibration, 

and acoustic pressure are chosen as the state variables. Inlet pressure and exhaust pressure represent 
the condition of chemical reacting process and performance of vacuum pump. There are correlations 
between the supply current to dynamic behavior of load torque of pump motor. As mentioned before, 
vibration accelerometers were proposed to monitor the dynamic running conditions of vacuum pump. 
W. S. Cheung [10] addressed that dry pumps designed for semiconductor processes has own 
acoustical characteristics.  

 Most of dry vacuum pump systems for semiconductor processes are composed of booster pump 
parts and dry pump parts. Fig. 1 shows the experimental setup for measurement of the state variables 
of the dry vacuum pump system. The accelerometer signals measured from the body of the dry 
vacuum pump are vector-summed and converted into a scalar value. The signal sampling rate of 
40.96 KHz was chosen, which is sufficient to cover the 10 kHz bandwidth of vibration signals. 
Collected digital signals are used to calculate in every 0.1 second the mean values of two pressure 
signals and the root mean squared (RMS) values of two supply current signals and two vibration 
signals.  

 

 

Figure 1 - Experimental setup for measurement of the state variables of the dry vacuum pump system 

2.2 Statistical analysis of measured state variables  
Fig.2 shows time series signals measured during 6 hours and their amplitude distributions. The 

inlet pressure and booster supply pump current signals (Fig. 2 (a) and (c)) are seen to have three 
segmented amplitude distributions. Two upper distributions are related to the gas-loaded state of the 
vacuum pump and the lowest one is related to the idle state of the vacuum pump, respectively. These 
separable states are obviously observed from the distributions of the exhaust pressure and dry pump 
supply current signals (Fig. 2 (b) and (d)). This work proposes to separate all the collected process 
data into the gas-loaded and idle groups. As shown in Fig. 2, the segments of G1 ~ G4 correspond to 
the gas-loaded state group and those of I1 ~ I3 to the idle state group. Each segment is assigned to 
each batch in this work. Of course, the series of gas-loaded batches as well as those of idle batches 
are separately used for predictive diagnostics. A reference signal suitable to divide both batch data is 
seen to be one of four signals (inlet pressure, exhaust pressure, booster and dry pump current 
signals). It is interesting to note that the vibration acceleration signals shown Fig. 2 (e) and (f) have a 
single peaked distribution similar to the normal distribution. It may mean that the vibration signals 
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are generated by the running conditions of rotating elements of the vacuum pump system, not the 
gas-loading conditions. It is the reason to use the vibration accelerometers to monitor the running 
conditions of rotating elements (e.g. bearings, gears and rotors). As shown Fig. 2(g), acoustic 
pressure data of gas loaded state and idle state have different shapes.  

 
 

 
Figure 2 - Measured sample data and their distribution characteristics calculated every 0.1 seconds 
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3. PROCEDURE OF PREDICTIVE DIAGNOSTICS 

3.1 Preprocessing scheme for Hotelling’s T2 
The main idea of predictive diagnostic algorithm is that compare the monitored batch data from 

present processing with the reference batch data under the normal operating condition. Therefore, 
the first step is to collect the reference batch (or historical data set, HDS) including all possible 
normal running conditions, which are obtained from the initially repeated 20~50 processes. In this 
study, we selected the pumping speed decreased case data and collected batch data during first 4 
days (46 processes) are decided as the reference batch.  

 Next step is to calculate T2 values from each batch data. T2 means the statistical distance of 
batch data, so, the sizes of each batch data should be equal for valid comparison. However, the size 
of batch data is depending on processing time, and processing times is irregular as shown Figure 2. It 
is the reason why preprocessing scheme is needed for Hotelling’s T2 to apply the vacuum pump 
diagnostics. 

3.2 Adaptive parameter modeling (APM) 
As shown previously in section 2.2, batch data of gas loaded states were separately decentralized 

into the upper and the lower bounds, and batch data of idle states were centralized. The trend and 
distribution of idle state process data indicates how well the processes were maintained stable. We 
assumed that one asymptotic curve can express trend of data. To model their linear trend, a simple 
linear model was chosen as described by Eq. 1  

βα +⋅= nyn  (1)
Where yn is the n-th mean value, α is the slope coefficient of the asymptotic curve, and β is each 

initial value asymptotic curve (i.e. at n=0). The linear model parameters {α, β} are obtained from the 
least squares methods using equation (2). Also, the standard deviation for fitted asymptotic curve 
was calculated using equation (3). 
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We note that the three parameters in Equations (2) and (3) were obtained from each idle state 
batch data. As a result, the idle state batch was represented with 21 parameters (i.e., 7 state variables 
multiplied by 3 parameters per state variable) from the mean value. We note that the parametric 
model is adaptive even with respect to the time-varying processes and the statistically different 
measurement signals. These model parameters actually embed the major features of each batch such 
that they enable the restoration of the ‘representative’ trend of the measured data. The evaluated 
standard deviation corresponding to each model was used to add the randomly disturbed values. This 
series of step is called adaptive parameter modeling (APM), and one process batch data is converted 
to one raw vector consisted of 21 parameters by APM. As mentioned section 3.1, reference batch 
data were selected first 46 processes for this study. As a result, the reference data matrix (46 by 21) 
was recorded. 

3.3 PCA and Hotelling’s T2 
Principal component analysis (PCA), which is well known as a measurement data-driven 

predictive diagnostic approach, has proven to be an effective method. For PCA, the reference data 
are expressed as a matrix in the following form 

EVTX T +⋅=  (4)
where T and VT denote the score matrix and the transposed loading matrix, and E represents the 

residual matrix. Each column of the reference matrix X was mean-centered and normalized to unit 
variance. In the singular value decomposition, the score matrix is equivalent to the production of the 
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normalized column-orthogonal matrix U and the diagonal matrix Λ of singular values and the 
loading matrix V to the normalized column-orthogonal matrix. The residual matrix E indicates the 
unselected signal components of the reference batch data that depend on the number of selected 
singular values chosen to construct the score matrix. In this work, 95 % ascending ordered singular 
values were selected. 

A major advantage of PCA is its ability to quantitatively compare new batch data Xn to the 
reference batch. This comparison is made by projecting the new batch data onto the principal 
component model of the reference batch defined in Eq. (5), which allows to evaluate a new score Yn
  

VXY nn ⋅=  (5)
This score (row vector) is used to calculate the statistical value of Hotelling’s T2 which allows us 

to monitor disparities between the newly collected batches and the reference batch. The current 
value (n-th process) of Hotelling’s T2 is calculated as  (6) 
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where NS is the number of selected singular values and symbols Yn,k and λk denote the k-th 
elements of the current score vector and the singular values, respectively.  

4. Result and discussion 
 To validate diagnostic algorithm proposed in this study, we applied this algorithm to pump data 

from reference paper [9]. Used pump data included 201 processes data and replaced by performance 
degradation. The algorithm of reference [9] used six gas-loaded signal data, and the algorithm of this 
study used 7 idle state signal data. T2 value were recorded every process, T2 chart well represented 
the status of dry pump. If trends of T2 value observed, we could diagnose the state of vacuum pump 
qualitatively. By extension, the upper critical limit (UCL) is widely used to diagnose quantitatively. 
UCL is  

refrefUCL kmT σ×+=2  (5)

where mref is average of T2 calculated from reference data, σref is standard deviation of T2 from 
reference data, and k is factor.  

 As shown Figure 3 (a), T2 value passed the UCL at 187th process. In Figure 3(b), continuous 
rising trend was observed and it was evidence of to setup the warning section. With warning section 
considered, Figure 3 (b) means, that performance of vacuum pump were decreased since 129th 
process and vacuum pump was dead at 187th process. 
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Figure 3 – APM-based T2 chart. (a) is result of six gas-loaded state signal data.  

(b) is result of seven idle state signal data.  
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In summary, chart of Figure 3 (a) was diagnosed fault point correctly with gas-loaded state 
process data except acoustic pressure data. Chart of Figure 3 (b) was predictive diagnosed fault with 
idle state process data with acoustic pressure added seven signal data. 

5. Concluding remarks 
We proposed two refinements to predictive diagnose of vacuum pump, one is that idle state 

process data were selected instead of gas-loaded state data, the other is that collected signal is six 
previously used data and added acoustic pressure data. Collected raw data converted to parameter 
matrix with APM algorithm, dimensional reduced by PCA, and calculated Hotelling’s T2 value. The 
trend of T2 value well represented the performance state of vacuum pump, and detected fault point. 
The improvement of added acoustic pressure data was that the available of setting up the warning 
section, and it means that predictive diagnose of vacuum pump for semiconductor manufacturing 
process is possible.  
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